3.3.92 \(\int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)} \, dx\) [292]

3.3.92.1 Optimal result
3.3.92.2 Mathematica [C] (verified)
3.3.92.3 Rubi [A] (verified)
3.3.92.4 Maple [C] (verified)
3.3.92.5 Fricas [C] (verification not implemented)
3.3.92.6 Sympy [F]
3.3.92.7 Maxima [F]
3.3.92.8 Giac [F]
3.3.92.9 Mupad [F(-1)]

3.3.92.1 Optimal result

Integrand size = 25, antiderivative size = 93 \[ \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)} \, dx=-\frac {d^2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}+\frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}} \]

output
d^2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*Elliptic 
E(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2))*(b*tan(f*x+e))^(1/2)/f/(d*sec(f*x+e)) 
^(1/2)/sin(f*x+e)^(1/2)+d^2*(b*tan(f*x+e))^(3/2)/b/f/(d*sec(f*x+e))^(1/2)
 
3.3.92.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.55 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.78 \[ \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)} \, dx=-\frac {d \sqrt {d \sec (e+f x)} \left (-3+\operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{4},\frac {7}{4},-\tan ^2(e+f x)\right ) \sqrt [4]{\sec ^2(e+f x)}\right ) \sin (e+f x) \sqrt {b \tan (e+f x)}}{3 f} \]

input
Integrate[(d*Sec[e + f*x])^(3/2)*Sqrt[b*Tan[e + f*x]],x]
 
output
-1/3*(d*Sqrt[d*Sec[e + f*x]]*(-3 + Hypergeometric2F1[3/4, 5/4, 7/4, -Tan[e 
 + f*x]^2]*(Sec[e + f*x]^2)^(1/4))*Sin[e + f*x]*Sqrt[b*Tan[e + f*x]])/f
 
3.3.92.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 3093, 3042, 3096, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {b \tan (e+f x)} (d \sec (e+f x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {b \tan (e+f x)} (d \sec (e+f x))^{3/2}dx\)

\(\Big \downarrow \) 3093

\(\displaystyle \frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {1}{2} d^2 \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {1}{2} d^2 \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}}dx\)

\(\Big \downarrow \) 3096

\(\displaystyle \frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 \sqrt {b \tan (e+f x)} \int \sqrt {b \sin (e+f x)}dx}{2 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 \sqrt {b \tan (e+f x)} \int \sqrt {b \sin (e+f x)}dx}{2 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 \sqrt {b \tan (e+f x)} \int \sqrt {\sin (e+f x)}dx}{2 \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 \sqrt {b \tan (e+f x)} \int \sqrt {\sin (e+f x)}dx}{2 \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}\)

input
Int[(d*Sec[e + f*x])^(3/2)*Sqrt[b*Tan[e + f*x]],x]
 
output
-((d^2*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x]])/(f*Sqrt[d*Se 
c[e + f*x]]*Sqrt[Sin[e + f*x]])) + (d^2*(b*Tan[e + f*x])^(3/2))/(b*f*Sqrt[ 
d*Sec[e + f*x]])
 

3.3.92.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3093
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[a^2*(a*Sec[e + f*x])^(m - 2)*((b*Tan[e + f*x])^(n + 
1)/(b*f*(m + n - 1))), x] + Simp[a^2*((m - 2)/(m + n - 1))   Int[(a*Sec[e + 
 f*x])^(m - 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && ( 
GtQ[m, 1] || (EqQ[m, 1] && EqQ[n, 1/2])) && NeQ[m + n - 1, 0] && IntegersQ[ 
2*m, 2*n]
 

rule 3096
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[a^(m + n)*((b*Tan[e + f*x])^n/((a*Sec[e + f*x])^n*(b* 
Sin[e + f*x])^n))   Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x] /; 
FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 
3.3.92.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.48 (sec) , antiderivative size = 454, normalized size of antiderivative = 4.88

method result size
default \(-\frac {\csc \left (f x +e \right ) \left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {i \left (-i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {-i \left (\cot \left (f x +e \right )-\csc \left (f x +e \right )\right )}\, F\left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right )-2 \sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {i \left (-i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {-i \left (\cot \left (f x +e \right )-\csc \left (f x +e \right )\right )}\, E\left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {i \left (-i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {-i \left (\cot \left (f x +e \right )-\csc \left (f x +e \right )\right )}\, F\left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )-2 \sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {i \left (-i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {-i \left (\cot \left (f x +e \right )-\csc \left (f x +e \right )\right )}\, E\left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )+\sqrt {2}\, \cos \left (f x +e \right )-\sqrt {2}\right ) \sqrt {b \tan \left (f x +e \right )}\, \sqrt {d \sec \left (f x +e \right )}\, d \sqrt {2}}{2 f}\) \(454\)

input
int((d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/2/f*csc(f*x+e)*((-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2)*(I*(-I-cot(f*x+e)+ 
csc(f*x+e)))^(1/2)*(-I*(cot(f*x+e)-csc(f*x+e)))^(1/2)*EllipticF((-I*(I-cot 
(f*x+e)+csc(f*x+e)))^(1/2),1/2*2^(1/2))*cos(f*x+e)^2-2*(-I*(I-cot(f*x+e)+c 
sc(f*x+e)))^(1/2)*(I*(-I-cot(f*x+e)+csc(f*x+e)))^(1/2)*(-I*(cot(f*x+e)-csc 
(f*x+e)))^(1/2)*EllipticE((-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2),1/2*2^(1/2) 
)*cos(f*x+e)^2+(-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2)*(I*(-I-cot(f*x+e)+csc( 
f*x+e)))^(1/2)*(-I*(cot(f*x+e)-csc(f*x+e)))^(1/2)*EllipticF((-I*(I-cot(f*x 
+e)+csc(f*x+e)))^(1/2),1/2*2^(1/2))*cos(f*x+e)-2*(-I*(I-cot(f*x+e)+csc(f*x 
+e)))^(1/2)*(I*(-I-cot(f*x+e)+csc(f*x+e)))^(1/2)*(-I*(cot(f*x+e)-csc(f*x+e 
)))^(1/2)*EllipticE((-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2),1/2*2^(1/2))*cos( 
f*x+e)+2^(1/2)*cos(f*x+e)-2^(1/2))*(b*tan(f*x+e))^(1/2)*(d*sec(f*x+e))^(1/ 
2)*d*2^(1/2)
 
3.3.92.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.13 \[ \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)} \, dx=\frac {2 \, d \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) - i \, \sqrt {-2 i \, b d} d {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + i \, \sqrt {2 i \, b d} d {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{2 \, f} \]

input
integrate((d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(1/2),x, algorithm="fricas")
 
output
1/2*(2*d*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))*sin(f*x + 
e) - I*sqrt(-2*I*b*d)*d*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, co 
s(f*x + e) + I*sin(f*x + e))) + I*sqrt(2*I*b*d)*d*weierstrassZeta(4, 0, we 
ierstrassPInverse(4, 0, cos(f*x + e) - I*sin(f*x + e))))/f
 
3.3.92.6 Sympy [F]

\[ \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)} \, dx=\int \sqrt {b \tan {\left (e + f x \right )}} \left (d \sec {\left (e + f x \right )}\right )^{\frac {3}{2}}\, dx \]

input
integrate((d*sec(f*x+e))**(3/2)*(b*tan(f*x+e))**(1/2),x)
 
output
Integral(sqrt(b*tan(e + f*x))*(d*sec(e + f*x))**(3/2), x)
 
3.3.92.7 Maxima [F]

\[ \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)} \, dx=\int { \left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {b \tan \left (f x + e\right )} \,d x } \]

input
integrate((d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(1/2),x, algorithm="maxima")
 
output
integrate((d*sec(f*x + e))^(3/2)*sqrt(b*tan(f*x + e)), x)
 
3.3.92.8 Giac [F]

\[ \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)} \, dx=\int { \left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {b \tan \left (f x + e\right )} \,d x } \]

input
integrate((d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(1/2),x, algorithm="giac")
 
output
integrate((d*sec(f*x + e))^(3/2)*sqrt(b*tan(f*x + e)), x)
 
3.3.92.9 Mupad [F(-1)]

Timed out. \[ \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)} \, dx=\int \sqrt {b\,\mathrm {tan}\left (e+f\,x\right )}\,{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{3/2} \,d x \]

input
int((b*tan(e + f*x))^(1/2)*(d/cos(e + f*x))^(3/2),x)
 
output
int((b*tan(e + f*x))^(1/2)*(d/cos(e + f*x))^(3/2), x)